10 Conway, H $\,$ D , Mechanics of Materials (Prentice-Hall, New York, 1950), p 138

11 Mesmer, G and Weissenburger, J T, "Deflection of beams using the Clebsch notation," unpublished lecture notes, Washington Univ, St Louis, Mo, Dept Appl Mech, numerous editions and revisions since 1955

Analysis of a Symmetrically Loaded Sandwich Cylinder

E H BAKER*

North American Aviation, Inc., Downey, Calif.

Nomenclature

 $D_x D_y$ = beam flexural stiffnesses per inch of width of ortho tropic shell in axial and circumferential directions respectively, in lb

 D_{Q_x} = shear stiffness in xz plane per inch of width, lb/in

 E_x, E_y extensional stiffnesses of orthotropic shell in axial and circumferential directions, respectively lb/in

 $G_c \\ M_x$ core shear modulus in xz plane, psi

moment acting in the x direction, in lb/in

tension force acting in the centroidal plane, lb/in N

pressure acting on cylinder in direction normal to plane of sandwich, psi

displacement in x, y, and z directions, respectively u,v,wtransverse shear force acting in xz plane, lb/in

Poisson's ratio associated with bending in x and y directions, respectively

'oisson's ratios associated with extension in x and y μ_x', μ_y' directions, respectively

Introduction

PROCEDURE for analyzing homogeneous isotropic cylinders loaded symmetrically along the longitudinal axis was presented by Timoshenko 1 In that analysis, it was assumed that shear distortion is negligible, compared with bending distortion However, in the case of a cylinder constructed from a sandwich with a relatively low traverse shear rigidity, the shear distortion may not be negligible fore, an analysis is presented in the following paragraphs that includes shear distortion for a symmetrically loaded orthotropic sandwich cylinder The shear deformations are taken into consideration by the same method used by Libove and Batdorf² in accounting for shear deformations in a sandwich plate

Derivation of the Differential Equation

As shown in Fig 1, the cylinder is loaded symmetrically with respect to the longitudinal axis Only small deflections

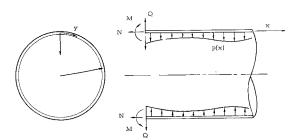
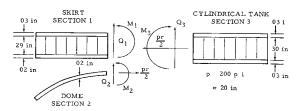


Fig 1 Cylinder subjected to symmetrical external forces along axis

Received August 27, 1963; revision received October 10, 1963 Senior Research Engineer, Applied Mechanics Group, Space and Information Systems Division



DETAIL A A

Fig 2 Pressure vessel joint detail

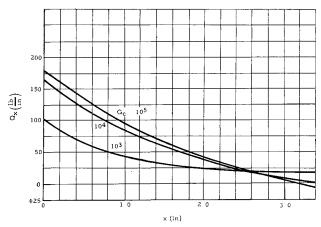


Fig 3 Effects of shear deflection on transverse shear force

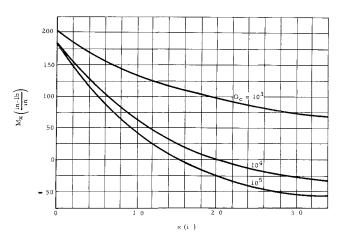


Fig 4 Effects of shear deflection on internal moments

are considered Because of symmetry, the resultant moment in the x direction, M_x , is written as a function of just two de pendent variables:

$$M_x = -\frac{D_x}{1 - \mu_x \mu_y} \left[\frac{d^2 w}{dx^2} - \frac{1}{D_{Q_x}} \frac{dQ_x}{dx} \right]$$
 (1)

The three equations of equilibrium are

$$(dN_x/dx) = 0 (2)$$

$$N_x \frac{d^2 w}{dx^2} + \frac{dQ_x}{dx} + \frac{N_y}{r} + p = 0$$
(3)

$$(dM_x/dx) - Q_x = 0 (4)$$

It can be seen from Eq. (2) that the force N_x is constant; therefore $N_x = N_0$

The forces in the middle surface of an orthotropic shell in terms of the deflections are obtained from Ref 3:

$$N_0 = \frac{E_x}{1 - \mu_x' \mu_y'} \left[\frac{du}{dx} + \mu_y' \left(-\frac{w}{r} \right) \right]$$
 (5)

$$N_y = \frac{E_y}{1 - \mu_x' \mu_y'} \left[\left(-\frac{w}{r} \right) + \mu_x' \frac{du}{dx} \right] \tag{6}$$

Table 1 Solution of the differential equation

$$\frac{\alpha^4 - \beta^4 > 0}{w} = \frac{BM_0 + Q_0}{D(B - A)(4\alpha^2 - A^2)} e^{-Ax} + w = \left[\frac{Q_0}{Dm\alpha^2} - \frac{M_0}{2D\alpha^2}\right] e^{mx} + w = \frac{e^{-Rx}}{2D\beta^4} \left[\left(-\beta^2 \cos Px + \frac{R}{P}\beta^2 \sin Px\right)M_0 + \frac{AM_0 + Q_0}{D(B - A)(B^2 - 4\alpha^2)} e^{-Bx} - \left[\frac{Q_0}{2D\alpha^2} - \frac{M_0}{Dm}\right] x e^{mx} - \left(\frac{\alpha^2}{P} \sin Px - R \cos Px\right)Q_0\right]$$

$$M_x = \frac{Q_0[e^{-Ax} - e^{-Bx}]}{B - A} + \frac{M_0[Be^{-Ax} - Ae^{-Bx}]}{B - A} - M_z = e^{mx}[M_0 + (Q_0 - mM_0)x] - M_x = \frac{e^{-Rx}}{P}[Q_0 \sin Px + M_0(P \cos Px + R \sin Px)]$$

$$Q_x = \frac{Q_0[-Ae^{-Ax} + Be^{-Bx}]}{B - A} + \frac{M_0[-ABe^{-Ax} + ABe^{-Bx}]}{B - A} - Q_x = e^{mx}[Q_0 + (mQ_0 - 2\alpha^2M_0)x] - Q_x = \frac{e^{-Rx}}{P}[Q_0(P \cos Px - R \sin Px) - M_0(R^2 + P^2) \sin Px]$$
where
$$A = [2\alpha^2 + 2(\alpha^4 - \beta^4)^{1/2}]^{1/2} - m = -(2)^{1/2}\alpha - R = (\beta^2 + \alpha^2)^{1/2}$$

$$B = [2\alpha^2 - 2(\alpha^4 - \beta^4)^{1/2}]^{1/2} - P = (\beta^2 - \alpha^2)^{1/2}$$

Table 2 Internal forces at joint

G_c , psi	Q_1 , lb/in	Q_2 , lb/in	Q_3 , lb/in	M_1 , in lb/in	M_2 in -lb/in	M_3 in -lb/in
103	82 6	17 3	-100 0	-132 9	-3 1	204 0
10^{4}	143 1	20 3	$-163\ 4$	$-152\ 2$	$-4\ 4$	$183 \ 4$
10^{5}	158 9	20 8	$-180\ 0$	$-156\ 5$	-46	178 9

By combining Eqs. (1-6), the following differential equation

$$\left[1 + \frac{N_0}{D_{Q_x}}\right] \frac{d^4 w}{dx^4} - \left[\frac{E_y}{D_{Q_x} r^2} + \frac{1 - \mu_x \mu_y}{D_x} N_0\right] \frac{d^2 w}{dx^2} + \frac{E_y (1 - \mu_x \mu_y)}{D_x r^2} w = \frac{1 - \mu_x \mu_y}{D_x} \left[\frac{\mu_y}{r} N_0 + p\right] \quad (7)$$

Solution of the Differential Equation

Equation (7) was solved for the case of a long cylinder subjected to a moment M_0 and a transverse shear Q_0 , as shown in Fig 1 The normal pressure p and the axial force N_0 were made equal to zero The solution for Eq (7) is shown in Table 1 The constants are defined as follows:

$$lpha^2 = rac{E_y}{4D_{O_x}r^2} \qquad eta^4 = rac{E_y(1 - \mu_x\mu_y)}{4D_xr^2} \qquad D = rac{D_x}{(1 - \mu_x\mu_y)}$$

The influence coefficients for the displacement and rotation of the edge of the shell are

$$[w]_{x=0} = -\left[\frac{(\beta^2 + \alpha^2)^{1/2}}{2\beta^4 D}\right] Q_0 - \left[\frac{1}{2\beta^2 D}\right] M_0 \qquad (8)$$

$$\left[\frac{dw}{dx}\right]_{x=0} = \left[\frac{2\alpha^2 + \beta^2}{2D\beta^4}\right]Q_0 + \left[\frac{(\alpha^2 + \beta^2)^{1/2}}{D\beta^2}\right]M_0 \quad (9)$$

Equations (8) and (9) are valid for $\alpha^4 - \beta^4 > 0$, for $\alpha^4 =$ β^4 , and for $\alpha^4 - \beta^4 < 0$

Example

The joint of a sandwich pressure vessel with various shear rigidities is analyzed here to show the effects of shear deflections on the internal forces Figure 2 illustrates the pressure vessel and idealized structural model In analyzing the joint, the following material properties were used: elastic modulus equals 3.5×10^6 psi in the x direction and 4.5×10^6 psi in the y direction; Poisson's ratio equals 0 15 in both directions The internal pressure is 200 psi The internal forces Q_1 , Q_2 , Q_3 , M_1 , M_2 , and M_3 were determined for each of three different sandwich core shear moduli G, and the results are shown in Table 2 It can be seen from Table 2 that shear deflections may have an important influence on the internal

The variation of the shear force Q_x as a function of x, plotted in Fig 3, is for section 3 of the joint for each value of core shear rigidity The variation of the moment M_x as a function of x is plotted in Fig. 4 The shear forces Q_x and moments M_x were obtained from Table 1 It is obvious from Figs 3 and 4 that the shear and moment at the edge of a cylinder die out faster if the shear rigidity is large

References

¹ Timoshenko, S. P., Theory of Plates and Shells (McGraw Hill Book Co, Inc, New York, 1940), Chap XI

² Libove, C and Batdorf, S B, 'A small deflection theory for

flat sandwich plates," NACA Rept 899 (1948)
³ Stein, M and Mayers, J, "A small deflection theory for curved sandwich plates," NACA TN-2017 (1950)

Deformations and Stresses in an Axially Restrained Beam

HAROLD SWITZKY*

Republic Aviation Corporation, Farmingdale, N Y

Nomenclature

 a_0 = amplitude of lateral deflection of unrestrained beam due to lateral load and thermal gradients

amplitude of lateral deflection of restrained beam

Received September 11, 1963; revision received October 14

* Head of Configuration Development Group of the Structural Development Section Member AIAA